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The optimization of parameters for reactive motion of a body of variirble 
mass in a gravitational field with constant jet power N z const as well 
as the case of multistep reduction of power source weight CN with the 
corresponding reduction of the jet power N 7 GN/a, where a i,s the specific 
weight of the power source independent of N, was considered in [l]. In 
[z] the limiting case of continuous optimal jet power reduction with the 
corresponding power source weight reduction was considered, and the con- 
sideration of multistep power reduction was continued. 

Below are determined the optimal parameters for motion of a body of 
variable mass taking into account the random processes in power reduction 
of the source. 

1. Formulation of the problem. Let as the result of random factors at 
times tj the separate elements of the power source go out of action. We 
will assume that these elements or the complete power source consist of 
a certain number n of autonomous sections which are deactivated at the 
time of damage which results, in the general case, in the change of the 
work regime of the remaining sections and in reduction of the jet power 

N,.- ejN, (O<Pj<&j_l<...<&o==l) (I.11 

where Ne is the initial jet power, sj are parameters defined by the type 
of the power source and by the number of working sections. 

The specific weight of the power source, apparently, depends on the 
number of autonomous sections n which for a fixed value N, is bounded 
from above because of the existence of a certain minimum size of the 
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autonomous section n.< nmIIX = NO/Wmia. The weight of the power source 
during motion is assumed constant: GN = UN,. 

For minimum instantaneous consumption of fuel (working medium) for a 
given thrust and power source the jet power must be the maximum possible 
for the condition of the power source at a given time. If this require- 
ment does not result in an increased probability of power source damage 
then it will also be necessary for the minimum of the required fuel re- 
serve. Confining ourselves to this case, we will assume that the working 

regime of the undamaged sections is chosen such that the quantity Nj is 
the maximum possible and that in the areas among the damaged sections the 
jet power is equal to this quantity N = Nj for tj < t C tj + 1. 

Let the instants of time tj be known for some realized motion, then 
applying to equations of [II to the areas among the damaged sections we 
obtain the following expression for the weight of the body Ck at the 
termination of motion (t = tk): 

where Go is the initial weight of the body, a(t) is the thrust accelera- 
tion (thrust divided by mass flow of the body), g is the earth gravity 
acceleration, < n is the number of the instant of time of the last damage 
(it is assumed conditionally that tV =+, = tk). 

For the prediction of the motion characteristics we utilize Formula 

(1.2) in which the times of damage tj are taken as the average times of 
damage determined from the condition of reducing the integral for damage 
probability of the power source into unity per unit time, computed along 
the trajectory (see further Equations (2.1) and (2.2)). At the same time 
the probability.of simultaneous deactivation of several sections is 
neglected in the following, i.e. the number of the time instance of the 
expected damage coincides with the number of the deactivated sections*. 

Now. analogous to 111, we will formulate the problem for finding a 
minimum of the composite relative weight Go = GN” t GM0 of the power 
source GNo = ady,,/G,, and the averaged reserve of fuel GM0 = 1 - Gk/Go, re- 
quired for carrying out the given maneuver with a known dependence of 

l The so obtained average characteristics will not necessarily coincide 
with the mathematical expectations of the corresponding quantities. 
But in the capacity of the first approach for solving the problem the 
above formulated procedure is utilized. 
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the power source damage probability per unit time on the number of work- 

ing sections, the amount of power, body coordinates, and time*. 

The quantity Co which can be expressed by the following formula 

; : + fj[l$dlj (1.3) 
J=03tj ’ 

@ (here and in the following decretfses monotonically with the decrease of 

ti denotes the averaged moments of damage). Therefore the problem can be 

divided into two parts: 

1. For the given quantities N,, n and for a known dependence of damage 

probability of the power source on the above indicated parameters, deter- 

mine the time variation of the thrust acceleration a,,,(t) such that for 

the displacement between two given points in the phase space 

at given instants of time t0 and fk the functional 0 have a minimum 

2. For given quantities GO and hN ~~11, and also for the known relations 

a = a(n) and 0 = OWin(N,, n). determine the optimal values of N, and n, 

which ensure the minimum of the function Go, defined by Formula (1.3). In 

the following the first of the formulated problems is considered. 

2. The equations of the variational problem. Let us consider two types 

of random processes of power source damage, the character of which sub- 

stantially affects the equations of the variational problem. 

(a) the processes dependent on nonhomogeneous external conditions (the 

probability of damage depends on r) ; 

(b) internal processes and processes dependent on homogeneous external 

conditions (the probability of damage is independent of r) . Considering 

the random process of deactivation of a certain section of the power 

source independent from deactivation of other sections we will write down 

the probability p of deactivating one working section at time t as 

follows: 

The damage probability can also depend on other parameters defined by 

the specific type of the random process; their introduction does not 

involve difficulties. 
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m-3 ~o~~o)p~~ro, $1 and ~~~~*~~~(t~~ are the probabilities of power 
source damage at the beginning of motion; pi and pz are functions de- 
fined by the character of the randoni process and source. The averaged 
time tj+. 1 is determined from the condition of setting to unity the time 
integral of the probability p(t) computed along the trajectory r(t) from 
the averaged instant tj of the preceding damage. The time of the -last 
expected damage (t = tv) is found from the condition that this integral 
-from ty to tk is less than or equal to unity. For the probability p de- 
terrained for tj (2.1) we obtain the following relationships: 

i=O,I,.,.,v - 1; 9 (t) = 1 ~a (t) dt) (2.2) 

Eliminating in the expression for 01 CForrmnla (1.31) the thrust accele- 
ration a with the aid of the equations of motion in the gravitational 
field ‘6 = a-l, where R= R(r, t) is the acceleration trim gravity 
forces, we transform the functional @ into 

(2.3) 

For the ~in~~~~ of the functional (0 it is necessary that the trajec- 
tory consist from the extremals of the functionals 

where j = 0, 1, ..,, V; hj are constants with the condition of isoperi- 
metry (first tro eqUatiOnS of (3.3)); i.e. in the inertial rectangular 
coordinate system (r (11 .fZf r13f) the following Euler equations should 
be fulfilled along the irajeciory: 
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(b) -00~=1,2,3;j=0,1,..., Y;J.,=O) (2.5) 

From the first equation of (2.5) it can be seen that with the space 
nonhomogeneous external conditions (derivative ap,/ar( ‘) # 0) the 
dimensionality of the extremal trajectory can increase, i.e. the one- 

dimensional or two-dimensional damage-free trajectory can become two or 
three-dimensional, respectively. The second equation (2.5), as was shown 
in [ll, permits two first integrals in the case of a central gravita- 
tional field, while in the case of a homogeneous gravitational field it 
has an analytical solution a(:) = cl + C2t. 

Equating the sum of the coefficients for variations of the radius 
vector and velocity for t = ‘j in the expression for first variation of 
the functional 0 on the extremals, we obtain the following conditions 
for acceleration and its derivative: 

1 1 1 
- aj+ = 
'i 

r aj- 
1-l ’ 

- aj+ = -L aj- 
pj ,ej+ 

(i=l, 2,. . , v) (2.6) 

Here 

Bj+=Fta(tj+8), 
+ 

aj- = F”, a (tj - 8) 
-P 

ij+ = l;m,a (tj + 8), aj- = lima (tj - 6) 
(8>0) 

5 +o 

Thus, in damaging the power source at time t = tj the magnitude of 
the acceleration a and the magnitude of its time derivative must have a 
discontinuity while both these quantities decrease in passing through 
the discontinuity at the Ej/Ej _ 1 time: 

In case of (a), when the damage probability depends on the trajectory, 
when forming the first variation of the functional @ one must also take 
the variation of the times fj. This furnishes the additional conditions 

Pl ttj) 
Fj-1 - ej 

ej‘J (aj+, aj+) = 0 (I’ = 1, 2, . . , v - 1) (2.7) 

Thereafter the problem is reduced to finding a solution of the equa- 
tions of motion coincident. with the system (2.5) satisfying the boundary 
conditions and conditions (2.2) and (2.6), while for case (a), also the 
conditions (2.7) with the inequalities in (2.2) defining v. 
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3. The limiting case*. With a large number of power source sections 
the solution of the variational problem in the exact formulation is 
difficult. But if the number of sections is sufficiently large so that 
n - v >> 1, and if the sections are fully autonomous, i.e. E j = 1 - j/n, 
then the stepwise reduction of power 

N(t)=N,(i-j/n) for tj<s<tj+ (i = 0, 1,. . . ( v) (3.1) 

where tj is defined by Formulas (2.2), can be approximated by a continu- 

ous one 

IjT, - + PO (No) P (r, t) iv (3.2) 

Indeed, integrating Equation (3.2) in the range fj to tj + 1 we are con- 

vinced that N( tj) - N( tj + 1) = N,,/n, with accuracy up to terms of order 

l/(n - j)2, i.e. the power reduction from one moment of damage to another 
in the limiting case and the exact formulation is identical. 

The problem considered in the preceding section is reducible to find- 
ing the extremals of the functional 

(i + R, ; + R) + o (1) $ + + p (r,t)e)]} dt 

(3.3) 

e= N/N,, P (r, t) = p. (NoI P (r, t) 

where a(t) is a variable Lagrange multiplier of the differential con- 

straint (3.2). 

The differential equations for the extremala of such a functional in 
the inertial rectangular coordinate system are of the following form: 

I ap +pep=o (i=i, 2, 3) (34) 

d + +i (a, a) -+op =o, i+&e=o 

Thus, in place of the conditions (2.2)) (2.8) and (2.7) of the exact 
formulation we have in the limiting case two differential equations (last 
two equations in the system (3.4)). The following examples show the 
essential simplification of the solution for the limiting case compared 
to that of the exact formulation. 

4. Examples*. As an example let us consider the case when the power 

l For the limiting case the division of the damage processes into (a) 
and (b) types is inessential in deriving the equations of motion, 
therefore the equations are derived for the more general case (a). 
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source consists of fully autonomous sections (Ed = 1 - j/n), the random 

damaging process of the power source elements is of type (b), and 

P?(t) s 1, while the motion takes place along a straight line in a force- 

free field (R(r, t) E O), subject to the following boundary conditions: 

r (to) = ;(to) = 0, r ($.) = L, f ($) = 0, t, = 0, tic = T 

Exact formulation. Integrating the second equation in (2.5), taking 

into account the second condition in (2.2) and (2.G), we obtain 

j-1 

dj+=(*__$) ill+, aj+=(l-$)(a,++ ~o+tj), tj=f~o~ 

j-1 
1 ij = - iao+ + do+ 

PO [ P ti + + tj 
i=l 11 

j-1 j-1 
rj=L ,o+ 1 i+112 

PClb [ 2J i_o?-77;;+ io+@+$lt~+&~ (I& )I 

(4.2) 

The quantities aOt and a(,+ are determined by solving the system of 

linear algebraic equations obtained from the boundary conditions 

V-l 

aO+[2-+(l-~)(T--“~]+do+[~(~ tj++tJ+ 
j=1 

$ +(l-+)(T~-t”q=O (4.3) 

V-1 

a0 
+ 1 1 2 iS_lla + (T - t,) [ + + f (I - +) (T - t.,) ]} + 

Zj_ol-iln 
(4.4) 

V-1 

+ ci,+ _& 
i (2 PO2 

+&ii t+&&+)+ 
i=l 

+(T_t”) _!__ 

I ( PO 
“$j tj+_~t’)+~(l-$)(T-t”)(~+2tvq}=L 

i=l 

while the number of damages for the total time of motion v is determined 

according to the second condition of (2.2) from the inequality 

Thereafter, the functional 0 on the extremal trajectory becomes a func- 

tion of a, po, n and the boundary conditions 
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(4.5) 
v-1 

@min=T& + ,z 
1 [ 

( sot + d,+tj)2-t (a9+ + 

O 3=0 

d,+tj)p 

0 
(1 yi, n) + 

@,:)a 

3p$ (1 - i 1 n)S I + 

+ (I - +) (T--J [w -I- ci*+t,y + (ao-+ -j- d,+t,) ci*+ (T - tvf + f @o”)” v - t,p3) 
Solutions analogous to the above are obtained also for the case of 

arbitrary motion in a homogeneous gravitational field (R(r, t) E g,, # 0). 

Liniting case. The extremal law for the time variation of the thrust 
acceleration “;xt (t) in the limiting case for the above motion is of the 
following form: 

“ext (0 = & P*s ’ I 

1 - ,-P* - pe2 / (en* - 1) N 

_-A) -,,e-MT(p* = 5) 
p* ep* - 1 

(4.6) 

and the minimal value of the functional @ is 

* _ e-P+- p*a -“I 
ep* - 1 > 

In the limit for p _ 0, i.e. in the absence of damages, Formulas 

(4.6) and (4.7) becorn: 

(4.7) 

For T- m 

tonically to 

damage (pot’” 

and fixed value of PO/n, the quantity (omi. decreases mono- 
(a/2g)L2(p,/n)3. If, however, the motion in the prmence of 
# 0) follows a linear law a{ t), optimal in the absence of 

damages, then for T - @ and fixed pe/a the value of the functional (D 
tends to infinity and there exists an optimal time of motion T,,, = 3.52 
(n/p,), for which 0 has a minimum value approximately equal to 3.46 

(o/2g)L2(po/n) 3; for a *xt( t),optimal for the same value of p,,/n,and for 
T=T opt the functional (Dmin = 1.68 (oi2g)L2(p,/n)3. 

The solid lines in Fig. 1 show the dependence of 

(Dt=aDmin -= I GaLa m 
tY8 

mirl 
I 

@min Ip,-0 

on P in the exact formulation for n = 

for the limiting case n - 0. 
1, 2. 5. 10, 20, 50 ,as well as 

It can be seen from the figure that start- 
ing with n = 10 the exact and the limiting values of the functional @ 
are sufficiently close. The solid curve v = n in Fig. 1 determines thz 
maximum permissible value of p for a given value of n. * 
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For comparison, the dotted lines in Fig. 1 show the analogous curves 

Fig. 1. 

corresponding to the motion in 

the presence of damages accord- 

ing to the linear law a(t) 

(dotted line in Fig. 2) which 

was optimal in the absence of 

damages. 

The example for the depend- 

ence of 

%xt aext a*= -=- 
6L/T2 aext (O) I pa=0 

t 
on O=-iji 

optimal with damages for n = 2 

and p = 3/2 is shown in Fig.2 

as thl solid line. 

Motion with coasting. Let there be given the nondimensional time 6 for 

operation duration of the power source N: 

N(t) 3 a (t) 3 0 for (0 < tl Q t < ta < T), 6 = 1 - (ta - tl) / T < 1 

Assuming that in turning off the power source one can avoid the 

damages in its sections let us consider the following function p(t): 

po#O for ogtgt1, ta<t<T 
for tl<t <ta 

Applying the equations for the limiting case we obtain the following 

prbperty of such a motion: if for 

a, 

-0.8 

Fig. 2. Fig. 3. 

P* = 0 the optimal value 0, = t,/T = e/2, i.e. the coasting (passive) 
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region is located symmetrically, then for p # 0 the coasting region is 
shifted in time toward the start of the trajectory (see solid lines In 

Fig. 3 - the dependence of 8, on p, for 6 = 1, 0.5, 0.2). Despite the 
fact that p = 0 for Q = 0 the functional @ on the extremal trajectory in- 
creases monotonically with decrease in 6. 

Motion with return. Let 

r (0) = I: (0) = 0, r (h) = L, f (tl) - 0, r(T)=i(T)=cl (0 <h< T) 

For this motion the property similar to that noted for the motion with 
coasting is characteristic: optimal displacement to r = L occurs faster 
than the return to r = 0 (see dotted curve in Fig. 3 - dependence of 8,. 

on p.). In other words: at the initial region of motion, when the power 
has not yet decreased significantly, it is advantageous to have a larger 
thrust than at the following region, since it is possible to ensure a 
sufficiently high velocity of fuel outflow. 
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